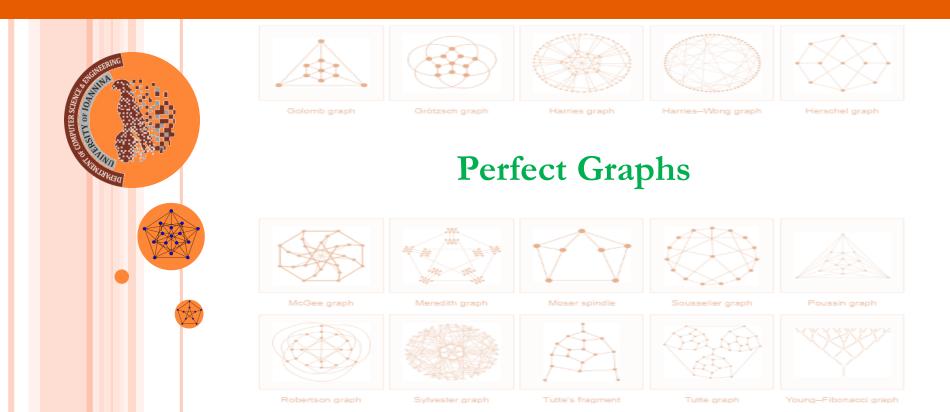
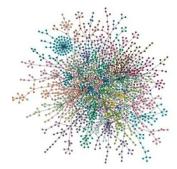
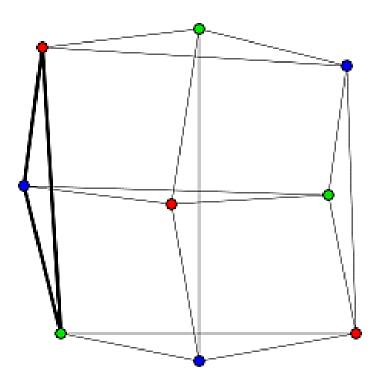


Graph Theory

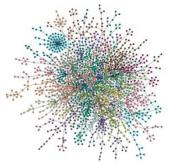


PLANARITY



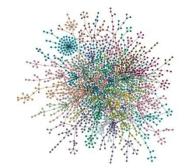


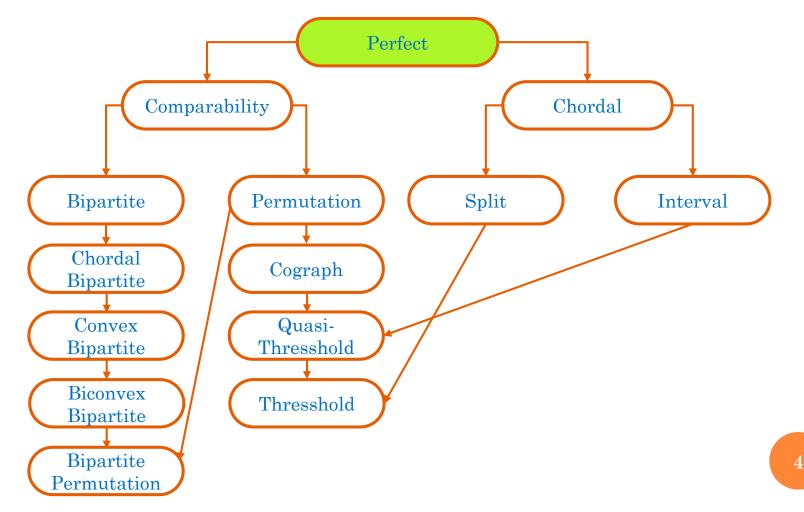
• Perfect Graphs



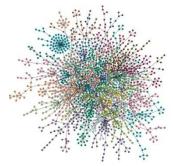
- A **perfect graph** is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph (clique number).
- An arbitrary graph G is perfect if and only if we have: $\forall S \subseteq V(G)(\chi(G[S]) = \omega(G[S]))$
- Theorem 1 (Perfect Graph Theorem) A graph G is perfect if and only if its complement \overline{G} is perfect
- Theorem 2 (Strong Perfect Graph Theorem) Perfect graphs are the same as Berge graphs, which are graphs *G* where neither *G* nor *G* contain an induced cycle of odd length 5 or more.

• Perfect Graphs





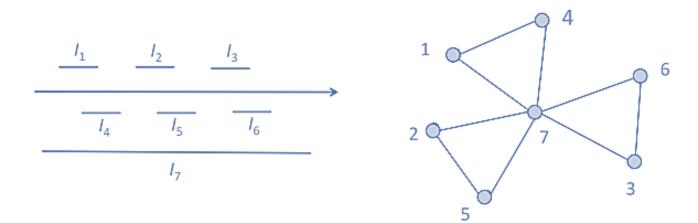
• Intersection Graphs



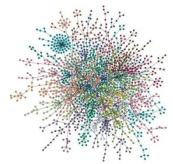
• Let *F* be a family of nonempty sets. The intersection graph of *F* is obtained be representing each set in *F* by a vertex:

$$x \to y \iff S_X \cap S_Y \neq \emptyset$$

- The intersection graph of a family of intervals on a linearly ordered set (like the real line) is called an **Interval graph**.
- An induced subgraph of an interval graph is an interval graph.



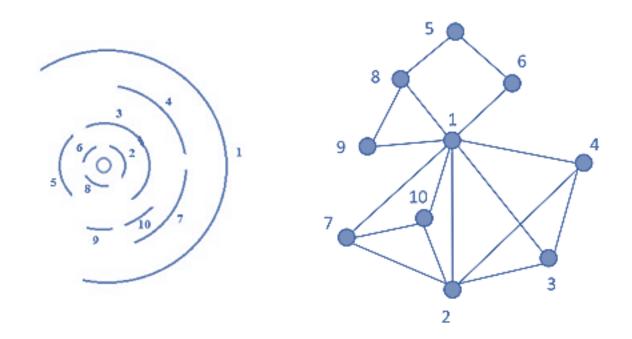
• Intersection Graphs



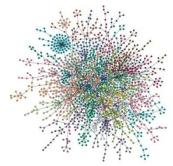
• Let *F* be a family of nonempty sets. The intersection graph of *F* is obtained be representing each set in *F* by a vertex:

$$x \to y \iff S_X \cap S_Y \neq \emptyset$$

• **Circular-arc graphs** properly contain the internal graphs.



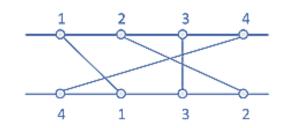
• Intersection Graphs

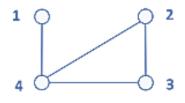


• Let *F* be a family of nonempty sets. The intersection graph of *F* is obtained be representing each set in *F* by a vertex:

$$x \to y \iff S_X \cap S_Y \neq \emptyset$$

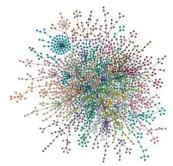
• A **permutation diagram** consists of n points on each of two parallel lines and n straight line segments matching the points.





 $\pi = [4, 1, 3, 2]$ $G[\pi]$

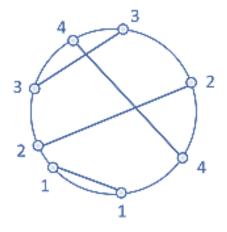
• Intersection Graphs

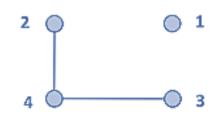


• Let *F* be a family of nonempty sets. The intersection graph of *F* is obtained be representing each set in *F* by a vertex:

$$x \to y \iff S_X \cap S_Y \neq \emptyset$$

• Intersecting chords of a circle

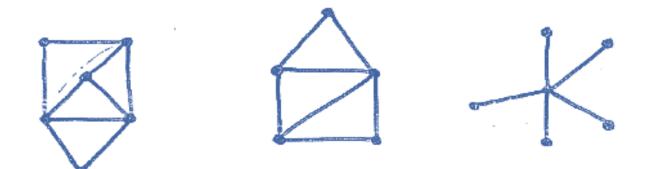




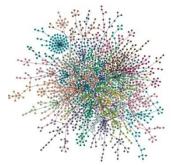
Perfect Graphs

• Triangulated Graph Property

- Every simple cycle of length l > 3 possesses a chord.
- Triangulated graphs (or chordal graphs)



• Transitive Orientation Property

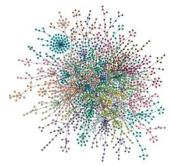


• Each edge can be assigned a one-way direction in such a way that the resulting oriented graph (V, F):

 $ab \in F and bc \in F \Rightarrow ac \in F (\forall a, b, c \in V)$

• Comparability graphs satisfy the transitive orientation property.

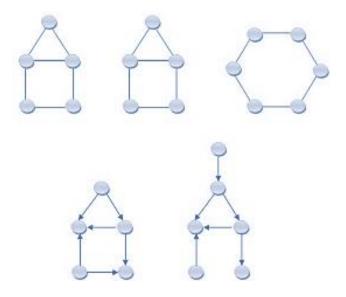
• Transitive Orientation Property



• Each edge can be assigned a one-way direction in such a way that the resulting oriented graph (V, F):

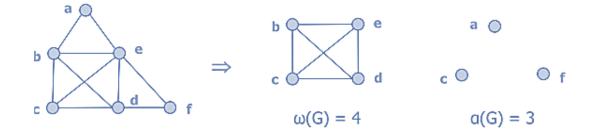
 $ab \in F and bc \in F \Rightarrow ac \in F (\forall a, b, c \in V)$

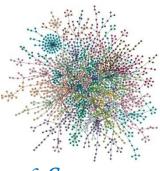
• Comparability graphs satisfy the transitive orientation property.



• Basic Numbers in Graphs

- Clique number $\omega(G)$: the number of vertices in a maximum clique of G
- Stability number $\alpha(G)$: the number of vertices in a stable set of max cardinality

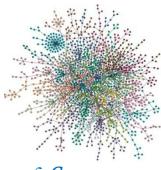




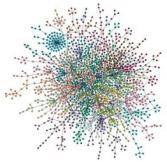
• Basic Numbers in Graphs

- Clique number $\omega(G)$: the number of vertices in a maximum clique of G
- Stability number $\alpha(G)$: the number of vertices in a stable set of max cardinality
- A clique cover of size k is a partition $V = C_1 + C_2 + \dots + C_k$ such that C_i is a clique.
- A proper coloring of size c (proper c-coloring) is a partition $V = X_1 + X_2 + \dots + X_c$ such that X_i is a stable set.
- Clique cover number κ(G) is the size of the smallest possible clique cover of G
- Chromatic number $\chi(G)$ the smallest possible c for which there exists a proper c-coloring of G.

Clique cover $V = \{2,5\} + \{3,4\} + \{1\}$ c-Coloring $V = \{1,3,5\} + \{2,4\}$ ζ : $\kappa(G)=3 \quad \chi(G)=2$

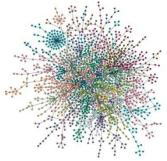


• Basic Numbers in Graphs



- Clique number $\omega(G)$: the number of vertices in a maximum clique of G
- Stability number $\alpha(G)$: the number of vertices in a stable set of max cardinality
- Clique cover number κ(G) is the size of the smallest possible clique cover of G
- Chromatic number $\chi(G)$ the smallest possible c for which there exists a proper c-coloring of G.

For any graph *G* it holds that: $\omega(G) \leq \chi(G)$ and $\alpha(G) \leq \kappa(G)$, while, $\alpha(G) = \omega(\overline{G})$ and $\kappa(G) = \chi(\overline{G})$



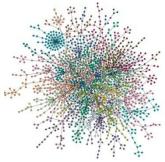
• Basic Numbers in Perfect Graphs

- Clique number $\omega(G)$: the number of vertices in a maximum clique of G
- Stability number $\alpha(G)$: the number of vertices in a stable set of max cardinality
- Clique cover number κ(G) is the size of the smallest possible clique cover of G
- Chromatic number $\chi(G)$ the smallest possible c for which there exists a proper c-coloring of G.
- χ Perfect property: For each induced subgraph G_A of G

 $\chi(G_A) = \omega(G_A)$

• α -Perfect property : For each induced subgraph G_A of G

 $\alpha(G_A) = \kappa(G_A)$



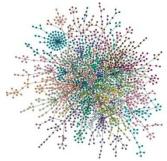
• Basic Numbers in Perfect Graphs

- Clique number $\omega(G)$: the number of vertices in a maximum clique of G
- Stability number $\alpha(G)$: the number of vertices in a stable set of max cardinality
- Clique cover number κ(G) is the size of the smallest possible clique cover of G
- Chromatic number $\chi(G)$ the smallest possible c for which there exists a proper c-coloring of G.

Let G = (V, E) be an undirected graph: $(P \ 1) \quad \omega(G_A) = \chi(G_A) \quad \forall A \in V$ $(P \ 2) \quad \alpha(G_A) = \kappa(G_A) \quad \forall A \in V$

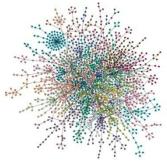
G is called Perfect

• Triangulated Graphs

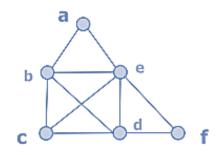


Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)

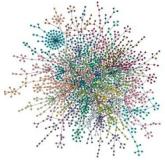
• Triangulated Graphs



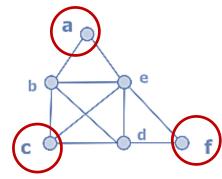
- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- **Dirac** showed that: every chordal graph has a simplicial node, a node all of whose neighbors form a clique.



• Triangulated Graphs

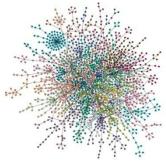


- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- **Dirac** showed that: every chordal graph has a simplicial node, a node all of whose neighbors form a clique.



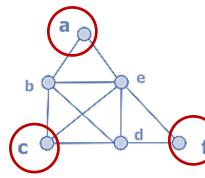
a ,	с,	f	simplicial nodes
b,	d,	е	non siplicial

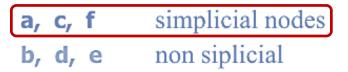
• Triangulated Graphs



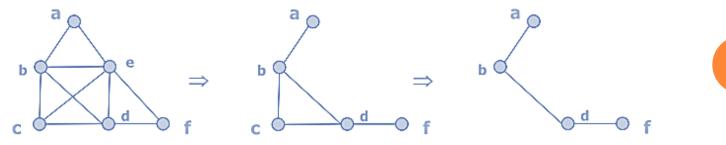
20

- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- **Dirac** showed that: every chordal graph has a simplicial node, a node all of whose neighbors form a clique.

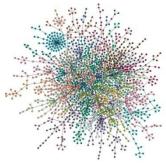




• It follows easily from the triangulated property that deleting nodes of a chordal graph yields another chordal graph.

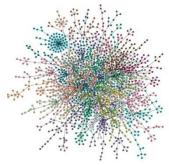


• Triangulated Graphs



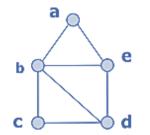
- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- Recognition Algorithm :
 - 1. Find a simplicial node of *G*
 - 2. Delete it from *G*, resulting *G*'
 - 3. **Recourse** on the resulting graph G', until no node remain

• Triangulated Graphs



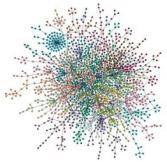
- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- Recognition Algorithm :
 - 1. Find a simplicial node of G
 - 2. Delete it from G, resulting G'
 - 3. Recourse on the resulting graph G', until no node remain
- Node-Ordering:

perfect elimination ordering (PEO), or perfect elimination scheme.



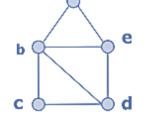
(a, c, b, e, d) (c, d, e, a, b) (c, a, b, d, e) ...

• Triangulated Graphs

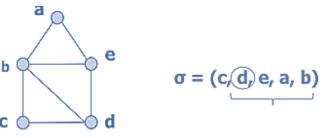


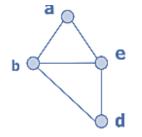
- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- Node-Ordering:

perfect elimination ordering (PEO), or perfect elimination scheme.



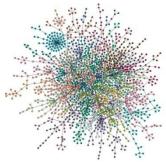
• Let $\sigma = [v_1, v_2, ..., v_n]$ be an ordering of the vertices of a graph G(V, E), then $\sigma = \text{peo}$ if each v_i is a simplicial node to graph $G[\{v_i, v_{i+1}, ..., v_n]\}$.





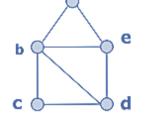
23

• Triangulated Graphs



- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- Node-Ordering:

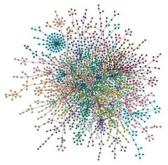
perfect elimination ordering (PEO), or perfect elimination scheme.



• Let $\sigma = [v_1, v_2, ..., v_n]$ be an ordering of the vertices of a graph G(V, E), then $\sigma = \text{peo}$ if each v_i is a simplicial node to graph $G[\{v_i, v_{i+1}, ..., v_n]\}$.



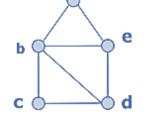
• Triangulated Graphs



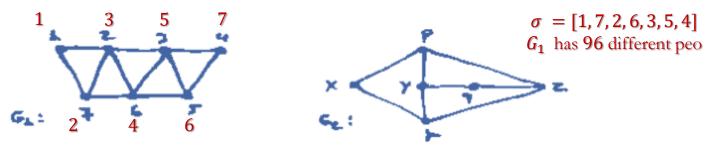
25

- Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs:
 G triangulated ⇔ *G* has the triangulated graph property (i.e., Every simple cycle of length *l* > 3 possesses a chord)
- Node-Ordering:

perfect elimination ordering (PEO), or perfect elimination scheme.

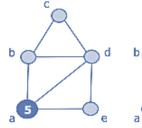


• Let $\sigma = [v_1, v_2, ..., v_n]$ be an ordering of the vertices of a graph G(V, E), then $\sigma = \text{peo}$ if each v_i is a simplicial node to graph $G[\{v_i, v_{i+1}, ..., v_n]\}$.



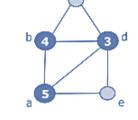
- Triangulated Graphs
 - LexBFS Algorithm
 - Algorithm LexBFS:
 - 1. for all $v \in V$ do label(v) := ();
 - 2. for i := |V| down to 1 do
 - 1) select $v \in V$ with lexmax *label* (v);
 - 2) $\sigma(i) \leftarrow v;$
 - 3) for all $u \in V \cap N(v)$ do
 - 4) $label(u) \leftarrow label(u) || i$
 - 5) $V \leftarrow V \setminus \{v\};$

end



σ=[a]

 $\begin{array}{ll} L(b) = (4) & L(c) = (3) \\ L(c) = () & L(d) = (43) \\ L(d) = (4) & L(e) = (43) \\ L(e) = (4) & \end{array}$

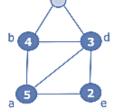


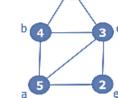
e

 $\sigma = [b, a]$

σ = [d, b, a]

L(c) = (32) L(e) = (432)

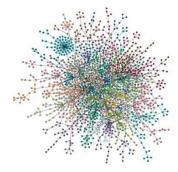




 $\sigma = [c, e, d, b, a]$

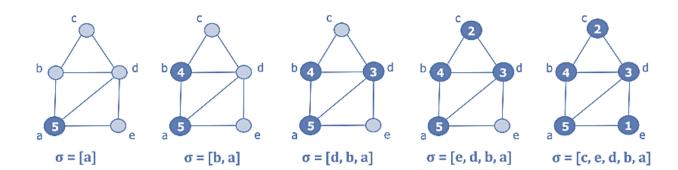
σ = [e, d, b, a]

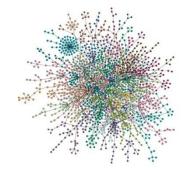
26



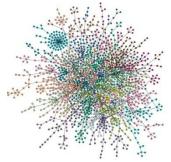
- Triangulated Graphs
 - MCS Algorithm
 - Algorithm MCS:
 - 1. for i := |V| down to 1 do
 - 1) select $v \in V$ with max number of numbered neighbors;
 - 2) number v by i
 - 3) $\sigma(i) \leftarrow v$;
 - 4) $V \leftarrow V \setminus \{v\};$

end

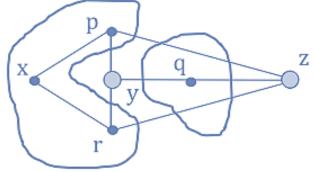




• Properties

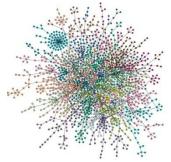


- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- If no proper subset of S in an a b separator, S is called Minimal Vertex Separator.

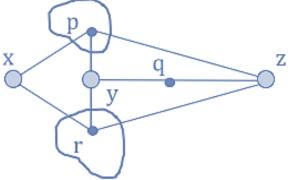


The set $\{y, z\}$ is a minimal vertex separator for p and q.

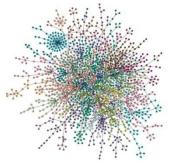
• Properties



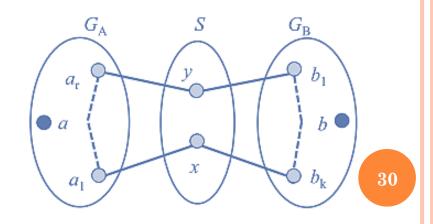
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- If no proper subset of S in an a b separator, S is called Minimal Vertex Separator.

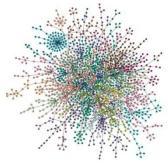


The set $\{x, y, z\}$ is a minimal vertex separator for p and r (p - r separator).

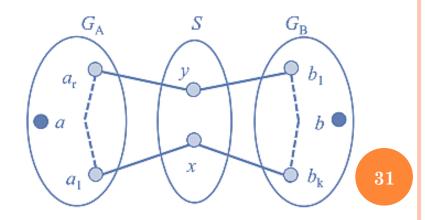


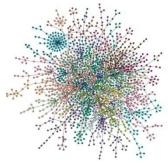
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: $(1) \Rightarrow (3)$



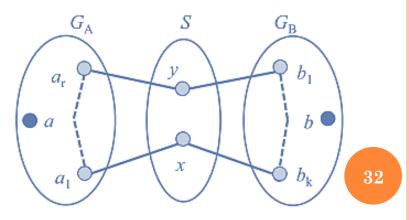


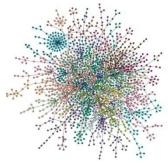
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: (1) \Rightarrow (3)
 - Let *S* be an a b separator.
 - We will denote G_A , G_B the connected components of G_{V-S} containing a, b.



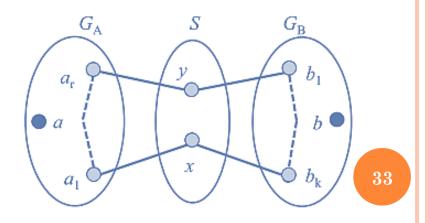


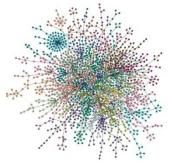
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: $(1) \Rightarrow (3)$
 - Since S is minimal, every vertex $x \in S$ is a neighbor of a vertex in G_A and a vertex in G_B .
 - For any $x, y \in S$, \exists minimal paths $(x, a_1, \dots, a_i, \dots, a_r, y)a_i \in G_A$ and $(x, b_k, \dots, b_i, \dots, b_1, y)b_i \in G_B$



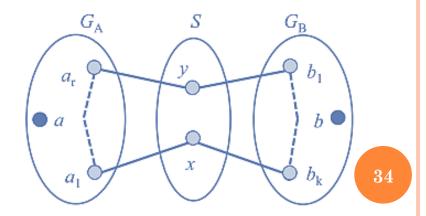


- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: $(1) \Rightarrow (3)$
 - Since $[x, a_1, \dots, a_r, y, b_1, \dots, b_k, x]$ is a simple cycle of length $l \ge 4$, \Rightarrow \Rightarrow it contains a chord.

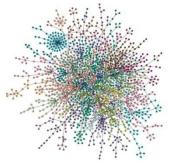




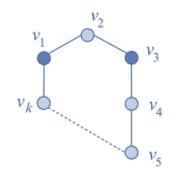
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: $(1) \Rightarrow (3)$
 - For every *i*, *j* a_ib_j ∉ E,
 (S is a b separator) and also a_ia_j ∉ E, b_ib_j ∉ E
 (by the minimality of the paths)
 - Thus, $x y \notin E$.



• Properties



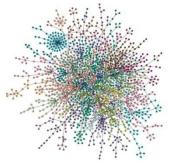
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.
 - (2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.
 - Proof: $(3) \Rightarrow (1)$
 - Suppose every minimal separator S is a clique Let $[v_1, v_2, ..., v_k, v_1]$ be a chordless cycle.
 - v_1 and v_3 are nonadjacent.



• Any minimal $v_1 - v_3$ separator $S_{1,3}$ contains v_2 and at least one of v_4, v_5, \dots, v_k . But vertices v_2, v_i $(i = 4, 5, \dots, k)$ are nonadjacent $\Rightarrow S_{1,3}$ does not induce a clique.

35

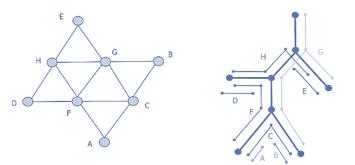
• Properties



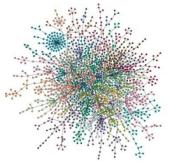
- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965): (1) *G* is triangulated.

(2) G has a **peo**; moreover, any simplicial vertex can start a perfect order.

- (3) Every minimal vertex separator induces a complete subgraph of G.
- The chordal graphs are exactly the intersection graphs of subtrees of trees. That is, for a tree T and subtrees $T_1, T_2, ..., T_n$ of T there is a graph G:
 - its nodes correspond to subtrees $T_1, T_2, ..., T_n$, and
 - two nodes are adjacent if the corresponding subtrees share a node of T.



o Properties



- Definition: A subset S of vertices is called a Vertex Separator for nonadjacent vertices a, b or, equivalently, a b separator, if in graph G_{V-S} vertices a and b are in different connected components.
- Theorem 3 (Dirac 1961, Fulkerson and Gross 1965):
 - (1) G is triangulated.
 - (2) *G* has a **peo**; moreover, any simplicial vertex can start a perfect order.
 - (3) Every minimal vertex separator induces a complete subgraph of G.

• Theorem 4:

Let G be a graph. The following statements are equivalent.

- (1) G is an interval graph.
- (2) G contains no C_4 and \overline{G} is a comparability graph.
- (3) The maximal cliques of G can be linearly ordered such that, for every vertex x of G the maximal cliques containing vertex x occur consecutively.